Sufficient and Necessary Conditions of Complete Convergence for Weighted Sums of PNQD Random Variables
نویسنده
چکیده
The complete convergence for pairwise negative quadrant dependent PNQD random variables is studied. So far there has not been the generalmoment inequality for PNQD sequence, and therefore the study of the limit theory for PNQD sequence is very difficult and challenging. We establish a collection that contains relationship to overcome the difficulties that there is no general moment inequality. Sufficient and necessary conditions of complete convergence for weighted sums of PNQD random variables are obtained. Our results generalize and improve those on complete convergence theorems previously obtained by Baum and Katz 1965 and Wu 2002 .
منابع مشابه
Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables
Let be a sequence of arbitrary random variables with and , for every and be an array of real numbers. We will obtain two maximal inequalities for partial sums and weighted sums of random variables and also, we will prove complete convergence for weighted sums , under some conditions on and sequence .
متن کاملOn the Complete Convergence ofWeighted Sums for Dependent Random Variables
We study the limiting behavior of weighted sums for negatively associated (NA) random variables. We extend results in Wu (1999) and a theorem in Chow and Lai (1973) for NA random variables.
متن کاملThe Almost Sure Convergence for Weighted Sums of Linear Negatively Dependent Random Variables
In this paper, we generalize a theorem of Shao [12] by assuming that is a sequence of linear negatively dependent random variables. Also, we extend some theorems of Chao [6] and Thrum [14]. It is shown by an elementary method that for linear negatively dependent identically random variables with finite -th absolute moment the weighted sums converge to zero as where and is an array of...
متن کاملStrong Convergence of Weighted Sums for Negatively Orthant Dependent Random Variables
We discuss in this paper the strong convergence for weighted sums of negatively orthant dependent (NOD) random variables by generalized Gaussian techniques. As a corollary, a Cesaro law of large numbers of i.i.d. random variables is extended in NOD setting by generalized Gaussian techniques.
متن کاملTHE ALMOST SURE CONVERGENCE OF WEIGHTED SUMS OF NEGATIVELY DEPENDENT RANDOM VARIABLES
In this paper we study the almost universal convergence of weighted sums for sequence {x ,n } of negatively dependent (ND) uniformly bounded random variables, where a, k21 is an may of nonnegative real numbers such that 0(k ) for every ?> 0 and E|x | F | =0 , F = ?(X ,…, X ) for every n>l.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Applied Mathematics
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012